Six Things Students Should Be Able to Do upon Completing Chapter 7, and One Thing They Shouldn’t

In my previous post, I described how happy I’ve been with my students’ ability to process the relatively complex interplay between kinetics and thermodynamics to understand the outcome of a competing set of chemical reactions. The specific example I gave involved the competition between transesterification and the Claisen condensation reaction, and that got me thinking about how far my students have come since they first started learning organic reactions last semester. In Chapter 7 of my book, students are given an overview of the ten most common elementary steps in organic reaction mechanisms—the same elementary steps that make up transesterification and the Claisen condensation reaction. Nevertheless, I don’t think students should be expected to deal with these kinds of complexities immediately after learning the elementary steps—they are simply not ready. Instead, students need time to digest what they learned in Chapter 7, and they also need significant scaffolding of additional material before being held accountable for these higher level decision making processes—material such as: how to incorporate proton transfer steps reasonably in a mechanism, relative nucleophile strengths, reversibility, and the ideas surrounding kinetic versus thermodynamic control.

What, then, should students be expected to do upon completing Chapter 7? I think it boils down to the following:

Continue reading